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ABSTRACT: In this paper, an attempt is made to determine the temperature distribution, displacement and 

stress functions on the outer curved surface of a time fractional two dimensional thermoelastic problem of 

thin annular disc occupying the space D: a ≤≤≤≤ r ≤≤≤≤ b, -h ≤≤≤≤ z ≤≤≤≤ h and of time fraction order derivative of order αααα. 

Further the inner and outer circular edges are kept at temperatures ),( tzu and ),( tzg  and the corresponding 

lower and upper surfaces are kept at temperatures ),(1 trF and ),(2 trF . The solution of the heat conduction 

problem is determined by applying the finite Marchi-Fasulo transform and Laplace transform techniques 

and the associated stresses are determined by using the displacement function.  

Key words and phrases: Time Fractional, Fractional Calculus, Thin Annular Disc, Thermal Stresses, Integral 

Transforms Technique. 

2000 Mathematics Subject Classification: 73. 

I. INTRODUCTION 

Fractional calculus deals with the analysis of studies that have several different possibilities of real or complex 

number powers of the differentiation operator D. Classical fractional derivatives include Grünwald-Letnikov 

derivative, Sonin–Letnikov derivative, Liouville derivative, Caputo derivative, Riesz derivative, Riesz–Miller 

derivative, Weyl derivative etc. And new fractional derivatives includes Machado derivative, Chen–Machado 

derivative, Caputo–Katugampola derivative, Caputo Fabrizio derivative etc. It is found that in many physical 

situations, the classical thermoelastic theory based on Fourier type heat conduction law breaks down like in case of 

manmade and biological materials/polymers, colloids, glassy and porous materials etc. So in above said cases, one 

needs to use a generalized theory of thermoelasticity which involve heat conduction model of time fractional (non- 

integer order) derivatives. 

In [10, 11] Povstenko derived the variation of time-fractional differential operators with memory effects. Also time-

fractional heat conduction in a composite medium is solved analytically for an infinite matrix and is presented for a 

spherical inclusion by Povstenko [12] and the corresponding associated thermal stresses. In [13-22], Kumar and 

Khobragade done mathematical modelling of some thermoelastic problems by the application of Fractional order 

theory.Raslan analyzed fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature 

distribution and discussed its application [25]. The new thermoelastic fractional order theory was studied and 
developed by Sherief et al., [26]. Xiong and Guo [27], derived the effect of variable properties with the action of 

moving heat source on magneto thermoelastic problem under application of fractional order thermoelasticity. Ezzat 

[28] did modeling of a new problem of the magneto-thermoelasticity theory within the context of a new 

consideration of fractional order derivative heat conduction. Ezzat [29] investigated the problem of state space 

approach to thermoelectric fluid with fractional order heat transfer. He uses Laplace transforms and state-space 

techniques to determine a one-dimensional application for a conducting half space of thermoelectric elastic 

material. In [1, 2] one dimensional transient thermoelastic problems derived the heating temperature and the heat 

flux on the surface of an isotropic infinite slab. The direct and inverse problems of thermoelasticity of a thin annular 

disc are considered in [3] to [8] Kumar and Khobragade [30] investigated three dimensional transient thermoelastic 

problem of a thin rectangular plate due to partially distributed heat supply. He determined temperature distribution, 

displacement and thermal stresses with the known boundary and initial conditions. Mirza and Roy [31] studied 

time-fractional three dimensional thermoelastic problem of a thin rectangular plate. Very recently Lamba and 

Deshmukh [23] studied hygrothermoelastic response of a finite solid circular cylinder.  

In this present article, the mathematical model of fractional order thermoelastic problem for a thin annular disk with 

convective boundaries on the upper and lower surface by quasi-static approach is investigated. The temperature 

distribution, displacement and stress functions of a thin annular disc determined by applying finite Marchi-Fasulo 

transform and Laplace transform techniques. 
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II. STATEMENT OF THE PROBLEM  

Consider a thin annular disc of thickness 2h occupying the space D: a ≤ r ≤ b, -h ≤ z ≤ h. The differential equation 
governing the displacement function U(r, z, t) as [6] is 
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with  ( ) 0=rU  at r = a and r = b                                                                             (2) 

where ν and at are the Poisson’s ratio and the linear coefficient of thermal expansion of the material of the disc. 
The Caputo type fractional derivative for nonlocal heat conduction is defined by [10] as 
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To find Laplace transforms of the Caputo derivative it needs to know the initial values of the function )(tf  and its 

integer derivatives of the order 1,....,2,1,0 −= nP
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The temperature distribution ),,( tzrT  of the plate is described by the differential equation of heat conduction in the 

context of fractional-order theory subjected to a time dependent heat flux in a thin annular disc as  
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subject to the initial condition  

0)0,,( =zrT                                                                                                                                                           (6) 

the boundary conditions   
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where k1 and k2 are the radiation constants on the two plane surfaces, k is the thermal diffusivity of the material of 

the disc.   

The stress functions rrσ  and θθσ  are given by 
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where µ is the Lame’s constant, while each of the stress functions rzσ , zzσ and zθσ   are zero within the disc in the 

plane state of stress. The Eqns. (1) to (12) constitute the mathematical formulation of the problem under 

consideration. 

III. SOLUTION OF THE PROBLEM 

Applying finite Marchi-Fasulo integral transform and Laplace transform and their inversions to Eqn. (5) and making 

use of the transformed boundary and initial conditions (6)-(10), one obtains temperature distribution function 

expressed as follows, 
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Here αE (.) represents the Mittag-Leffler function.                                                  

where m, n are positive integer, mµ  are the positive roots of the transcendental equation 
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Eqn. (13) is the desired solutions of the given problem with 121 =β=β  and 11 k=α , 22 k=α . 

IV. DETERMINATION OF THERMOELASTIC DISPLACEMENT 

Substituting the value of T(r, z, t) from (13) in (1) one obtains the thermoelastic displacement function U(r, z, t) as 
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V. DETERMINATION OF STRESS FUNCTIONS 

Using (14) in (11) and (12) the stress functions are obtained as  
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Numerical Results and Discussion 

Fixed, ( ) atehztzgtzu −−==
222),(),(  where 0>a   

The constants associated with the numerical calculation are taken as:- 

Inner radius a = 1 m, 

Outer radius b = 2 m, 

Thickness h = 0.1 m,                         

Material Properties: The cooper material was chosen for purpose of numerical calculation for a thin annular disc 

as:- 

Thermal diffusivity k = 4.42 m
2
/s 

Density ρ  = 558 kg/m
3
 

Specific heat pc  = 0.091 J/ (kg K) 

Poisson ratio v  = 0.36 

Coefficient of linear thermal expansion tc  = 16.5×10 −6 /K 

Young’s modulus E = 117 GPa 

 

Fig. 1. Temperature distribution. 

Fig. 1, represent the variation of temperature distribution along radial direction for the different values of fractional 

order parameters 2,5.1,1,5.0=a . It is seen that the nature of curve is sinusoidal. The temperature distribution 

flow non uniform pattern while moving from inner radii (r = 1) towards outer radii (r = 2). Also it is zero at the 

center r = 1.5 of the annular disk. Also it is noted that, the speed of propagation of the thermal signals is directly 

proportional to the values of fractional order parameter a. 
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Fig. 2. Radial stress distribution. 

Fig. 2 represent the variation of radial stress distribution along radial direction for the different values of fractional 

order parameters 2,5.1,1,5.0=a . The radial stress is zero at both the inner and outer radii r = 1.and r = 2. It is 

seen that the nature of curve is sinusoidal. It is noted that, the stress propagation is directly proportional to the 

values of fractional order parameter a . 

 

Fig. 3. Tangential stress distribution. 

Fig. 3 shows the variation of tangential stress distribution along radial direction for the different values of fractional 

order parameters 2,5.1,1,5.0=a . The tangential stress increases initially reaches to peak at r = 1.2 and then 

decreasing towards outer radii. Also it is seen observed that, the stress propagation is directly proportional to the 

values of fractional order parameter a . 

Hence from the numerical results it is clear that time fractional order derivative significantly influence the 

temperature distribution as well as radial and tangential stresses. The weak and strong conductivity for the time 

fractional order parameter a  noted within the range 10 <α<  and 21 <α<  and the normal conductivity represented 

by .1=α  

VI. CONCLUSION  

In this paper, we completely investigated the thermoelastic problem of a thin annular disc and determined the 

temperature distribution, displacement and thermal stresses on the outer curved surface of the disc with 

inhomogeneous third kind boundary condition based on fractional heat conduction with the Caputo time-fractional 

derivative of order 20 ≤α< . The finite Marchi-Fasulo transform and Laplace transform techniques have been used 

to find the solution of the problem. The results are obtained in terms of Bessel’s function in the form of infinite 

series. A particular case of special interest can be derived by assigning suitable values to the parameters and 

functions in the expressions. The discussed results in this paper will be very useful in studying the thermal 

characteristics of annular bodies in real-life science and engineering problems by considering the fractional 

derivative in the field equations. 
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